
Package: tictactoe (via r-universe)
September 18, 2024

Type Package

Title Tic-Tac-Toe Game

Version 0.2.3

Description Implements tic-tac-toe game to play on console, either
with human or AI players. Various levels of AI players are
trained through the Q-learning algorithm.

License MIT + file LICENSE

LazyData TRUE

RoxygenNote 6.0.1

Depends R (>= 2.10)

Imports hash, stats

Suggests testthat, combiter,

URL https://github.com/kota7/tictactoe

BugReports https://github.com/kota7/tictactoe/issues

Repository https://kota7.r-universe.dev

RemoteUrl https://github.com/kota7/tictactoe

RemoteRef HEAD

RemoteSha 638244ec8fe832bb3af0fccbd083b0a0ad52094c

Contents
equivalent_states . 2
hash-ops . 2
ttt . 3
ttt_ai . 4
ttt_game . 5
ttt_human . 7
ttt_qlearn . 8
ttt_simulate . 9
vectorized-hash-ops . 10
xhash . 11

1

https://github.com/kota7/tictactoe
https://github.com/kota7/tictactoe/issues

2 hash-ops

Index 13

equivalent_states Equivalent States

Description

Returns a set of equivalent states and actions

Usage

equivalent_states(state)

equivalent_states_actions(state, action)

Arguments

state state, 3x3 matrix

action integer vector of indices (1 to 9)

Value

equivalent_states returns a list of state matrices

equivalent_states_actions returns a list of two lists: states, the set of equivalent states and
actions, the set of equivalent actions

hash-ops Hash Operations for Single State

Description

Hash Operations for Single State

Usage

haskey(x, ...)

S3 method for class 'xhash'
x[state, ...]

S3 replacement method for class 'xhash'
x[state, ...] <- value

S3 method for class 'xhash'
haskey(x, state, ...)

ttt 3

Arguments

x object

... additional arguments to determine the key

state state object

value value to assign

Value

• haskey returns a logical

• `[` returns a reference to the object

• `[<-` returns a value

ttt Play Tic-Tac-Toe Game

Description

Start tic-tac-toe game on the console.

Usage

ttt(player1 = ttt_human(), player2 = ttt_human(), sleep = 0.5)

Arguments

player1, player2
objects that inherit ttt_player class

sleep interval to take before an AI player to make decision, in second

Details

At default, the game is played between humans. Set player1 or player2 to ttt_ai() to play
against an AI player. The strength of the AI can be adjusted by passing the level argument (0
(weekest) to 5 (strongest)) to the ttt_ai function.

To input your move, type the position like "a1". Only two-length string consisting of an alphabet
and a digit is accepted. Type "exit" to finish the game.

You may set both player1 and player2 as AI players. In this case, the game transition is displayed
on the console without human inputs. For conducting a large sized simulations of games between
AIs, refer to ttt_simulate

See Also

ttt_ai, ttt_human, ttt_simulate

4 ttt_ai

Examples

Not run:
ttt(ttt_human(), ttt_random())

End(Not run)

ttt_ai Tic-Tac-Toe AI Player

Description

Create an AI tic-tac-toe game player

Usage

ttt_ai(name = "ttt AI", level = 0L)

ttt_random(name = "random AI")

Arguments

name player name

level AI strength. must be Integer 0 (weekest) to 5 (strongest)

Details

level argument controls the strength of AI, from 0 (weekest) to 5 (strongest). ttt_random is an
alias of ttt_ai(level = 0).

A ttt_ai object has the getmove function, which takes ttt_game object and returns a move con-
sidered as optimal. getmove function is designed to take a ttt_game object and returns a move
using the policy function.

The object has the value and policy functions. The value function maps a game state to the evalu-
ation from the first player’s viewpoint. The policy function maps a game state to a set of optimal
moves in light of the value evaluation. The functions have been trained through the Q-learning.

Value

ttt_ai object

Fields

name Player name

level Strength (0 to 5)

policy_func xhash object that maps a game state to moves

value_func xhash object that maps a game state to a value

Methods

ttt_game 5

getmove(game, ...) Returns a move considered as optimal.
Input:

• game: ttt_game object

Output: a move

Examples

game <- ttt_game()
p <- ttt_ai(level=3)
p$getmove(game)

ttt_game Tic-Tac-Toe Game

Description

Object that encapsulates a tic-tac-toe game.

Usage

ttt_game()

Value

ttt_game object

Fields

state 3 x 3 matrix of current state

nextmover, prevmover Next and previous mover (1 or 2)

history N x 2 matrix of game history, each row represents a move by (player, position)

Methods

play(position, ...) Play a move. At default, play is made by the next mover, but can be
changed by setting the ‘nextmover‘ argument.
Input:

• position: position to play
• ...: Variables to overload

Output: TRUE iff a move is legal and game has not been over.

undo() Undo the previous play
Input: None
Output: NULL

is_legal(position) Check if the position is a legal move
Input:

• position: position to check

6 ttt_game

Output: TRUE if the given position is a legal move

legal_moves() Returns all legal moves
Input: None
Output: Integer vector of legal moves

check_win(player) Check if the given player has won.
Input:

• player: player (1 or 2)
• ...: Variables to be overloaded

Output: TRUE iff the given player has won

check_result() Check the result from the board state
Input: None
Output:

• -1: undetermined yet
• 0: draw
• 1: won by player 1
• 2: won by player 2

next_state(position, ...) Returns the hypothetical next state without changing the state field.
Input:

• position: position to play

Output: state matrix

show_board() print the boad on consle
Input: None
Output: NULL

to_index(position) Convert a position to the index
Input:

• position: a position

Output: an integer 1 to 9, or 0 for a invalid position

index_to_str(position) Convert a position to a location representation in the form of "A1"
Input:

• position: a position

Output: a character

Examples

x <- ttt_game()
x$play(3)
x$play(5)
x$show_board()

x$undo()
x$show_board()

ttt_human 7

ttt_human Human Tic-Tac-Toe Player

Description

Create an human tic-tac-toe player

Usage

ttt_human(name = "no name")

Arguments

name player name

Value

ttt_human object

Fields

name Player name

Methods

getmove(game, prompt = "choose move (e.g. A1) > ", ...) Communicate with users to type in
the next move.

Input:

• game: ttt_game object

• prompt: prompt message

Output: a character of a move

Examples

Not run:
p <- ttt_human()
p$getmove()

End(Not run)

8 ttt_qlearn

ttt_qlearn Q-Learning for Training Tic-Tac-Toe AI

Description

Train a tic-tac-toe AI through Q-learning

Usage

ttt_qlearn(player, N = 1000L, epsilon = 0.1, alpha = 0.8, gamma = 0.99,
simulate = TRUE, sim_every = 250L, N_sim = 1000L, verbose = TRUE)

Arguments

player AI player to train

N number of episode, i.e. training games

epsilon fraction of random exploration move

alpha learning rate

gamma discount factor

simulate if true, conduct simulation during training

sim_every conduct simulation after this many training games

N_sim number of simulation games

verbose if true, progress report is shown

Details

This function implements Q-learning to train a tic-tac-toe AI player. It is designed to train one AI
player, which plays against itself to update its value and policy functions.

The employed algorithm is Q-learning with epsilon greedy. For each state s, the player updates its
value evaluation by

V (s) = (1− α)V (s) + αγmax′
sV (s′)

if it is the first player’s turn. If it is the other player’s turn, replace max by min. Note that s′ spans
all possible states you can reach from s. The policy function is also updated analogously, that is,
the set of actions to reach s′ that maximizes V (s′). The parameter α controls the learning rate, and
gamma is the discount factor (earlier win is better than later).

Then the player chooses the next action by ϵ-greedy method; Follow its policy with probability
1− ϵ, and choose random action with probability ϵ. ϵ controls the ratio of explorative moves.

At the end of a game, the player sets the value of the final state either to 100 (if the first player
wins), -100 (if the second player wins), or 0 (if draw).

This learning process is repeated for N training games. When simulate is set true, simulation is
conducted after sim_every training games. This would be usefule for observing the progress of
training. In general, as the AI gets smarter, the game tends to result in draw more.

See Sutton and Barto (1998) for more about the Q-learning.

ttt_simulate 9

Value

data.frame of simulation outcomes, if any

References

Sutton, Richard S and Barto, Andrew G. Reinforcement Learning: An Introduction. The MIT Press
(1998)

Examples

p <- ttt_ai()
o <- ttt_qlearn(p, N = 200)

ttt_simulate Simulate Tic-Tac-Toe Games between AIs

Description

Simulate Tic-Tac-Toe Games between AIs

Usage

ttt_simulate(player1, player2 = player1, N = 1000L, verbose = TRUE,
showboard = FALSE, pauseif = integer(0))

Arguments

player1, player2
AI players to simulate

N number of simulation games

verbose if true, show progress report

showboard if true, game transition is displayed

pauseif pause the simulation when specified results occur. This can be useful for explo-
rative purposes.

Value

integer vector of simulation outcomes

Examples

res <- ttt_simulate(ttt_ai(), ttt_ai())
prop.table(table(res))

10 vectorized-hash-ops

vectorized-hash-ops Vectorized Hash Operations

Description

Vectorized Hash Operations

Usage

haskeys(x, ...)

setvalues(x, ...)

getvalues(x, ...)

S3 method for class 'xhash'
getvalues(x, states, ...)

S3 method for class 'xhash'
setvalues(x, states, values, ...)

S3 method for class 'xhash'
haskeys(x, states, ...)

Arguments

x object

... additional arugments to determine the keys

states state object

values values to assign

Value

• haskeys returns a logical vector

• setvalues returns a reference to the object

• getvalues returns a list of values

xhash 11

xhash Create Hash Table for Generic States

Description

This function creates an xhash object, extended version of hash. While hash accepts only strings
as indices, xhash can deal with generic index variables, termed as "state".

Usage

xhash(convfunc = function(state, ...) state, convfunc_vec = function(states,
...) unlist(Map(convfunc, states, ...)), default_value = NULL)

Arguments

convfunc function that converts a state to a key. It must take a positional argument state
and keyword arguments represented by ..., and returns a character.

convfunc_vec function for vectorized conversion from states to keys. This function must re-
ceive a positional argument states and keyword arguments ... and returns
character vector. By default, it vectorizes convfunc using Map. User may spec-
ify a more efficient function if any.

default_value value to be returned when a state is not recorded in the table.

Value

xhash object

See Also

hash-ops, vectorized-hash-ops

Examples

h <- xhash(convfunc = function(state, ...) paste0(state, collapse='-'))

insert
h[c(1, 2, 3)] <- 100
h[matrix(1:9, nrow=3, ncol=3)] <- -5

retrieve
h[c(1, 2, 3)]
h[matrix(1:9, nrow=3, ncol=3)]
h[1:9] # equivalent as above, due to conversion to a same key
h[c(3, 2, 1)] # this is undefined

delete
h[c(1, 2, 3)] <- NULL

12 xhash

vectorized operations
insert
setvalues(h, list(1:2, 1:3), c(9, 8))
retrieve
getvalues(h, list(1:9, 1:2, 3:1))
delete
setvalues(h, list(1:9, 1:3), NULL)

Index

[.xhash (hash-ops), 2
[<-.xhash (hash-ops), 2

equivalent_states, 2
equivalent_states_actions

(equivalent_states), 2

getvalues (vectorized-hash-ops), 10

hash, 11
hash-ops, 2, 11
haskey (hash-ops), 2
haskeys (vectorized-hash-ops), 10

setvalues (vectorized-hash-ops), 10

ttt, 3
ttt_ai, 3, 4
ttt_game, 5, 5, 7
ttt_human, 3, 7
ttt_qlearn, 8
ttt_random (ttt_ai), 4
ttt_simulate, 3, 9

vectorized-hash-ops, 10, 11

xhash, 4, 11

13

	equivalent_states
	hash-ops
	ttt
	ttt_ai
	ttt_game
	ttt_human
	ttt_qlearn
	ttt_simulate
	vectorized-hash-ops
	xhash
	Index

